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Optimal analytic extrapolations revisited 

P Dit5 
Institute of Physics and Nuclear Engineering, P 0 Box MG6, Bucharest, Romania 

Received 11 January 1983, in final form 8 November 1983 

Abstract. The problem of optimal analytic extrapolation of holomorphic functions from 
a finite set of interior data points to another interior point is completely solved in the 
general case of data known with unequal errors. Simple and easy to handle algorithms 
are obtained. 

1. introduction 

In the last fifteen years there has been an explosion of interest in the study of analytic 
extrapolations, many functions of physical interest being known to have analytic 
properties. Consequently much effort has been devoted to describing such extrapola- 
tions (Goebel 1958, Chew and Low 1959, Frazer 1961, Ciulli and Fischer 1961, 
Cutkosky and Deo 1968a, b, Pisut and Presnajder 1969a, b, 1970, Pietarinen 1972, 
1973, Cutkosky 1973, Ciulli and Nenciu 1973, Ciulli et a1 1975, Stefanescu 1980, 
Ciulli and Spearman 1982). Typically such a function is determined within the 
holomorphy domain at a finite number of points. Elsewhere inside the analyticity 
domain, but outside the physical region of the process considered, the values of the 
function may be of considerable interest. Examples are provided by the production 
processes PN + M * B  ( P  for pseudoscalar mesons T and K, and B for baryons N and 
A) which afford information on TT and .rrK scattering. This information, unlike that 
for hadronic processes, cannot be obtained directly from experiment, a reliable picture 
of these processes emerging only by using various indirect methods. These methods 
make substantial use of analyticity properties of production amplitudes, the information 
on ~ r r  and T K  being obtained by some kind of analytic extrapolation. 

For definiteness we shall consider such a production process. Its amplitude F ( t )  
is a meromorphic function in the complex 2-plane with a cut 9m2G t ~ c o ,  where t is 
the square of the difference of the initial and final baryon four momenta and m is the 
pion mass. Certainly, the amplitude also depends upon other kinematical variables, 
but we singled out r since it is of interest in what follows. The residue at the pion pole 
t = m2 gives the scattering amplitude for the process TP+ TP. The experimental data 
are available at a finite number of points inside the analyticity region. Since the point 
t = m2 is not accessible to experiment we have to extrapolate the quantity ( t -  m2)F( t )  
which is an analytic function. 

Until now the extrapolation was done essentially by two methods. The first one 
was proposed by Goebel (1958) and Chew and Low (1959). It consists in fitting the 
small-t production data for F ( t )  to a polynomial in 2, and using that to extrapolate to 
t = m2.  It was observed by Frazer (1961) that the data are better fitted by a polynomial 
in z ( t ) ,  instead of a polynomial in t, where z ( t )  is a function that maps the analyticity 
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domain onto the unit disc. This proposal of Frazer has been improved by Cutkosky 
and Deo (1968a, b) and Ciulli (1969a, b) who found the conformal mappings leading 
to optimal asymptotic convergence of polynomial expansions. 

The second method of extrapolation uses the interpolation theory of analytic 
functions to bring the problem to a standard Pick-Nevanlinna problem. 

By the conformal mapping 

z(r)  = [ I  - (1 - r /9m~)”~] / [1  + ( I  -r/9m2)1/2] (1.1) 

the cut t-plane is mapped onto the unit disc D, D = { z ,  IzI < l}, the real axis -a< r S 

9m2 is mapped onto the real segment -1 S z S 1 and the pole at t = m2 is mapped to 

Many authors have noticed that the analytic extrapolation is an ill posed problem, 
and in order to obtain reliable results a stability condition has to be imposed since 
without it any value of the extrapolate can be obtained (Ciulli 1969a, b, Pisut 1970, 
Ciulli er a1 1975, Atkinson 1978). 

For our purposes it is sufficient to have an upper bound upon the modulus of the 
function along the cuts, of the form 

20, 0<20<1 .  

Let us define 

which is an analytic function without zeros inside the unit disc D and whose modulus 
satisfies 

lg(ei8)1 = M ( e ) .  (1.3) 
We shall denote by f (  z )  the reduced amplitude 

(1.4) 

and, owing to (1.2) and (1.3), f ( z )  is a bounded analytic function, i.e. l f (z) l< 1 for 
z E D. We shall denote by wi and 8, respectively the values of the function f ( z )  at 
the points zi, i = 1,. . . , n, and their errors. 

In general the problem of extrapolation consists in finding M = sup f (  zo) and 
m = inf f(zo) in the class of real analytic functions fo = f(2), satisfying If(zi) - wij s Si, 
i = 1, .  . . , n. The optimal extrapolated value and its error are given by f(ro) = 
( M + m ) / 2  and E(,?,) = ( M - m ) / 2  respectively. 

The Pick-Nevanlinna theory provides a straightforward solution of the problem 
when the data are known exactly, without errors. 

The problem is solvable if and only if the values wi fulfil a consistency condition 
(Krein and Nudelman 1973), i.e. the positive definiteness of the matrix 

A=(-) 1- wiwj 
1 - z,zj 1,j=1* 

If A has negative eigenvalues the problem has no solution. The set of all solutions 
can be found by applying Schur’s algorithm (Walsh 1960, Atkinson 1978) or Krein’s 
elegant method (Krein and Nudelman 1973). For practical purposes we suggest the 
use of the first method which is constructive. 
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The solutions of the problem: find an analytic function f(z), If(z)l s 1 for Z E D  
such that f(zi)  = wi, i = 1, . . . , n, are given by f (  z )  = po( z ) /qo (  z )  where po( z )  and qo( z )  
are the solutions of the recurrence relations 

p m  - 1 ( 2) = ( z - z m  / ( 1 - z m  z ) I p m  ( 2) + w P- " q m  ( 2) 7 

q m - I ( Z )  = q m  (2) + W',""'pm ( z ) ( z  - z m ) /  (1 - z m z ) ,  

m = 1 , 2  , . . . ,  n, 

( 1 . 6 ~ )  

p , ( z )  is an arbitrary bounded analytic function, Ipn(z)l S 1, q , ( z )  = 1 and 

(1.6b) 

k = m + l ,  . . . ,  n ;  m = 1 , 2  , . . . ,  n;  w I o ) = w i ,  i = l ,  . . . ,  n. 
The upper and lower bounds M and m are obtained for pn(z)  = *l respectively. 
The error E ( z o )  = ( M  - m ) / 2  has nothing to do with the experimental errors that 

we supposed to be equal to zero, being solely a consequence of the freedom allowed 
by the stabilising condition (1.2).  

It the errors are not zero both extrapolation methods do not provide a reliable 
estimate of the effect of these errors upon the extrapolated values, or an algorithm to 
calculate directly the extrapolated value in terms of wi. The recently proposed X2-test 
by Stefanescu (1980) does not improve the situation. 

The aim of this paper is to give a simple solution to both these problems by 
presenting a new algorithm for analytic extrapolations. It is shown that the optimal 
extrapolation of bounded analytic functions can be done by linear methods, i.e. methods 
of the form 

n 

f(z0) = 1 Ci(Z0) wz 
i = l  

where the weights Ci(zo) depend upon the errors and not upon the function to  be 
extrapolated. 

The method provides also a simple algorithm for the calculation of the error of 
the extrapolated value. 

Our results extend to the case of unequal errors those obtained previously by 
Osipenko (1982).  

The paper is organised as follows. In Q 2 we present the main theorems which will 
be used throughout the paper and rederive Osipenko's results (Osipenko 1976) for 
data known exactly, without errors. Section 3 contains the optimal extrapolation and 
error calculation formulae. In 9 4 the method is applied to a model set of data with 
controllable errors. Some concluding remarks are given in 0 5 .  The proofs of the 
theorems are collected in the appendix. 

2. Main theorems 

Let us define the classes of real analytic functions 
- 

B={f (z ) l I f ( z ) l a l , f (Z )=f (z ) fo rzED} ,  

A = { f ( r ) l f ~ B , I f ( z ~ ) - w ~ l s S ~ ,  i = l , .  . . , n } ,  

AB = { f (  z )  I f E B, I f( zi)l s Si, i = 1, . . . , n}, 

where zi and wi are real numbers, zi, wi E ( - 1 , l )  and 1 2  Si 20, i = 1 , .  . . . , n. 
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We shall suppose that A is a non-void set. A sufficient condition for this is that 

We shall use the following notations: 6 = ( a l , .  . . , a,,), w = ( w l , .  . . , w,) and E = 

By an extrapolation formula of f( z )  to the real point z = zo, we mean any arbitrary 

the A-matrix (1.5) should be strictly positive. 

(21,. . . , Z " ) .  

linear or nonlinear formula S(zo,  w, 6 )  and we say that quantity 

sup If(Z0)  - S(z09 w, 6)l 
f e A  

is the error of the extrapolation. 

i.e. for which the following infimum is attained; 
The best extrapolation formula So( zo, w, 6 )  will be that for which this error is least, 

& ( t o ,  E, S)=SUP I ~ ( Z O ) - S O ( Z O ,  W ,  611 
f E A  

=inf supIf(z,)-S(z,, w, 8)l. 
S f e A  

Any extrapolation problem, analytic or not, has two steps. The first consists in 
finding the optimal formula for f ( z o )  in terms of the given data z,, wi, 6,, i = 1,  . . . , n, 
by a linear method if possible; the second is the calculation of the error (2.1). 

With the previous notations we have the following theorem. 

Theorem 1. For any real zo,  -1 < zo < 1: 

(a) ~ ( 2 0 ,  E, 6 )  = inf sup If(z01- S ( z o ,  w, 611 = sup If(zo)l. 
S f c A  f e A B  

(b) There is a linear method of extrapolation 

f(z0) = cjczo, 6, E)w, 
1=1  

which saturates the above equality, i.e. 

(2 .3)  

This proposition provides us with the tools of optimal analytic extrapolations from 
interior data points to another interior point for bounded analytic functions within the 
class defined by (1.2).  The complicated problem of the evaluation of the error (2.1) 
reduces to a simpler one, that of finding the extremals of supfeAB If(zo)l. 

The most important peculiarity of our method worth noticing is that the extrapolated 
value (2.3) is calculated linearly from the input values wi. A proof of this result is 
given in the appendix. 

A second result which will be used in the following is a theorem by Hejhal (1974) 
which covers a very large class of extrema1 problems. We shall state it in the form 
we need but it is more general. 
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Theorem 2. Let us suppose that in the problem supfcA If(zo)\ there is at least one 
extremal f*( I) # constant. Then 

~ f * ( ~ , ) - w ~ ~ = 6 ~ , i = l ,  . . . ,  n. (2.5) 

for almost all indices i. 

In many problems of best approximation an information ‘super-abundance’ 
phenomenon may be present. This effect is well known in the theory of Chebyshev 
approximation. A phenomenon of this type is also present in optimal analytic extrapola- 
tion. It is a reflection of the fact that the analyticity and the boundedness imply strong 
correlations between the values taken by the analytic functions at distinct points. The 
extremals of the problems will verify (2.5) for some values of the subscript i ;  for other 
values they will satisfy the strict inequalities If*(zj) - wj/ < 6,. 

Theorem 2 gives the description of the behaviour of extremals and is of great use 
in finding them. Its content may also be interpreted as follows: not all data points 
carry useful information and we have to discard these points when doing extrapolations. 

We shall now apply these results to finding the optimal formula of extrapolation 
and the error, for data known exactly, i.e. 6i = 0, i = 1 , .  . . n. We define the Blaschke 
products 

2-21 2-2, 
B ( z )  = n -, B j ( z ) =  n - 7  

i = l  1-ziz 
j = l , .  . . , n. 

j = l  1 - z,z 
i t j  

According to theorem 1 the error is given by 

Since Si =0, AB will be the set 

AB = { f ( z) I f E B, f (  z , )  = . . . = f (  z,) = 0). 

It is easily seen that the functions of the class whose supremum is sought in (2.7) 
have the form f ( z )  = B ( z ) h ( z ) ,  where h ( z )  E B is an arbitrary bounded analytic 
function. Therefore the extremals of the problem (2.7) have the form f*(z)  = * B ( z )  
and consequently 

E(Zr3, E, 6 )  = IB(Z0) l .  (2.8) 
The weights Cj(zo, 6, E )  are the derivatives of the extremals of 

v j (a)  = SUP f(z0) 
fEA,  

where Aj is the following set: 

(2.9) 

A, = { f ( z ) i f ~  B 7 f ( z i )  = asij, i = 1 , .  . . , n}. 

The function f ( z )  = B , ( z ) g ( z ) ,  g(z)  E B will be in the class whose supremum is 
sought in (2.9) if g(z,) = a / B j ( z j ) .  The Schur algorithm (1.6) gives the generic form 
of a function f~ Ai 

[ ( z - Z j ) /  ( 1 - ZjZ)]h (2) + a / Bj( Zj) 
f ( z ) =  Bj(z )  1 +ah(Z)[(Z-zj)/(l -zjz)l/Bj(z,) 

where h( 2) E B is an arbitrary bounded analytic function. The extremal of the problem 
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(2.9) is obtained for h ( z )  = 1,  hence 

Therefore 

The optimal extrapolation formula has the form 

(2.10) 

The above results have been obtained by Osipenko (1976); they have a very simple 
form in contrast with those given by the nonlinear Pick-Nevalinna method. 

3. Optimal formula of extrapolation and calculation of error 

Theorem 1 reduces the problem of best extrapolation to that of solving two extremal 
problems. Since the functions we deal with are real analytic functions and we extra- 
polate from interior real points to another real point zo, we may normalise the extremals 
f*(z)  of the above problems such that f*(zO) > 0. 

We shall proceed by finding the algorithm for the calculation of the error & ( z 0 ,  E, 6). 
It is given by 

and in order to calculate it explicitly we have to construct the extremal of the problem 
(3.1). This extremal, according to theorem 2, will satisfy f*(zi)  = is, for almost all i. 
Actually the following proposition holds. 

Theorem 3. The function 

normalised by the condition f*(zo) > 0, is an extremal of the problem (3.1) if and only 
if for any Z,E E = { z , ,  . . ,,z,}, I f * ( z , ) I ~ 6 ~  and there does exist a subset F =  
{q,, . . . , z , , , , } ,  F c E such that 

(- 1 ) P + k 6 1 k ,  
(-1) P + t + l  a,,, 

k = 1 , .  . . , p ,  
k = p +  1,.  . . , m, (3.2) 

where p is an integer such that zln < zo < z,,,-, , A = (-l)”‘+p. Here we have the convention 
Z,(, = -1, ZI,,,*, = 1. 

This theorem is a reformulation of a theorem found by Osipenko (1982) for the 
case of data known with equal errors 6, = 6, i = 1,. . . , n. The proof of this result may 
be given along Osipenko’s lines, the only change being the use of theorem 2 instead 
of Heins’ theorem (Heins 1945, Havinson 1963) used by Osipenko, so that we shall 
omit i t .  
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The first problem to be solved is the finding of the set F. If F is strictly contained 
in E we have to discard some points. This means that there will be points zi where 
the extremal of the problem ( 3 . 1 )  will satisfy the strict inequalities If*(zi)l < 15,. Since 
there is no a priori reason to discard any point, we form the A-matrix (1 .5 )  in order 
to see if the data (3 .2 )  are compatible with the analyticity and boundedness properties 
of the extremal. 

Let us suppose, for definiteness, that we have the ordering -1 < z1 <.  . . < z ,  < 
zo < 1.  Then A has the form 

( 3 . 3 )  

The factor ( - l ) i+’  originates in the relations (3 .2 )  which show that the sign alternates 
from one point to the next. If A > 0 (all eigenvalues positive) we do not discard any 
point and F is identical to the initial set E. If A has negative or zero eigenvalues we 
have to discard points one after the other until A becomes positive. Since we are 
interested in obtaining the smallest possible error for the extrapolated value, we suggest 
to discard first the data points which have the greatest errors. Once F is determined, 
we make the notations 

zik = uk, wik = mk, 15ik = E k ,  k = 1 , .  . , , m. (3 .4 )  

Let 6 , ( z )  and $2) denote the Blaschke products ( 1 . 6 )  constructed with the set 
F = {U], . . . , um}.  The optimal formula of extrapolation and the error are given by 
the following theorem. 

Theorem 4. Let F = { u l , .  . . , U , }  c E be the set determined in theorem 3. Then the 
method 
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The formulae (3.5) and (3.6) completely solve the problem of optimal extrapolation 
for data known with unequal errors. 

However, the problem of extrapolation of analytic functions for which a bound like 
(1.2) is not available remains unsolved. There are only a few cases when we know an 
upper bound along the cuts on the function modulus. These favourable cases include 
the electromagnetic form factors and the hadronic contribution to the muon anomalous 
magnetic moment. In some cases the theoretical models may provide bounds, like 
Froissart's bound. These asymptotic bounds are generally known up to  multiplicative 
constant or smoothly variable factors. Even so they are of interest in our problem 
since we can construct the reduced amplitudes (1.4) ignoring the unknown factors. 

Thus we may suppose that I f (  z)l s M for z E D, even if we do not know what value 
M takes. In such cases the measured values and the corresponding errors set a scale 
for the bound and we have to  find out some means of extracting this information from 
the data. 

Theorem 1 is still true such that the error and the weights C, are determined by 
solving the corresponding extrema1 problems. The key proposition is again theorem 
2 which describes the behaviour of the extremals. In such cases we do not discard 
any point. Let us suppose the ordering -1 < z1 < . . . < z ,  < zo < 1. The problem is to 
find the minimal norm of an analytic function that satisfiesf(2,) = ( - l ) " - ' ~ ~ ,  i = 1, . . . , n, 
where E ,  are the values of the errors. The norm we look for is the Hm-norm, i.e. 

It is well known that for a finite set of data points there is always a bounded analytic 
function that takes prescribed values q at the points z,, f (  2)) = U,, j = 1, . . . , n (Walsh 
1960). 

l l f l l    SUP^<^ If(rele)l. 

The minimal norm is given by the greatest positive root of the equation 

d e t ( A 2 - ( - l ) " i & , ~  1 J )  =o.  
1 - zizj j , ,= l  

This minimal norm MO can be used for doing extrapolations. The error and the 
extrapolated value are given by formulae like (3.5) and (3.6), the only change being 
m + n and d$') + d$' / M O ,  j ,  k = 1, . . . , n. 

4. A numerical example 

We shall now apply our method to a model set of data with controllable errors. In 
the simple example we consider, the data are generated by the function 

f (  2) = [( z + 0.2)/( 1 +0.22)] exp[-$( 1 + z 2 ) ] .  

The 'experimental' points belongs to the segment (-0.95,0.25). We shall now list 
some typical situations. The data points are E = (-0.95, -0.87, -0.7, -0.63, -0.5, 
-0.35, -0.15, 0.0, 0.1, 0.25) and zo=0.8. 

The exact value of the function is f(0.8) = 0.3797, by comparison with the extra- 
polated value f(0.8) = 0.3558 *0.265 obtained by taking all the errors equal to zero. 
If we ascribe a 5 %  error to every exact value of the function at the above points, the 
data for the error calculation are not compatible. They become again compatible after 
discarding six of them. The result is f(O.8) =0.28*0.555. We want to notice the 
effect of the errors on the final result. If zo is closer to  the experimental region the 
situation improves. For example with zo = 0.35 one gets f(0.35) = 0.2925 * 0.052 and 
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the exact value is f(0.35) =0.2932. If zo is lying among the experimental points the 
results are impressive, the effect of the errors being drastically suppressed. We obtain, 
for example, f(-0.4) = -0.12*0.008 by comparison with the exact value f(-0.4) = 

In conclusion the method works very well and reliable results are obtained only 
-0.1217. 

by taking into account the propagation of the errors. 

5. Conclusion 

In this paper we have been concerned with the problem of optimal analytic continuation 
from a finite set of data points inside the analyticity domain to another interior point 
when the values of the analytic function are known with errors. 

This problem emerged in connection with the finding of an alternative to the existing 
methods of extrapolation which are known to be unsatisfactory, especially as concerns 
the evaluation of the error of the extrapolated values. The new algorithm is simple 
enough and easy to handle. It can be applied even in those cases when no explicit 
upper bound on the modulus of the amplitude is known. 

The obtained formulae provide a method of estimation of the function values for 
the entire real segment (-1, l ) ,  i.e. both inside and outside the physical domain. Thus 
one can obtain curves affected by known errors for physical quantities for all real 
values of the transverse momentum t inside the holomorphy domain. This will help 
in comparing data with theoretical models even for values of t outside the physical 
region. 

Appendix 

In the following f ( z )  will denote a real function defined on ( -1 , l )  which takes values 
in the same interval. We can limit ourselves to this class since the functions we are 
dealing with are real analytic functions and we extrapolate from a real set of data 
points to another real point. In this way the proof of theorem 1 is simplified. 

Proof of theorem 1. 
Let Y be the closure of the ( n  + 1)-dimensional set ( yo ,  y l , .  . . , y,) = 
( f ( z o ) ,  w1 , . . . ,  w,) wheref (z)EA,  - l < z o < l  and wie( -1 , l ) ,  i = l ,  . . . ,  n are real 
numbers. The classes A, B and AB have been defined in 0 2. Y is a convex body. 

Let us denote 

We shall prove that Co(6) =SUPf,AB I f ( z o ) l .  The relation ( A l )  implies 

Co(6) = sup f ( z o ) =  sup = sup f(zo). 
f e A  f s B  f s A B  

w , =  ...= w,=o 1 f (z,)Istj , , i=l,  ..., n 

The last part of the above relation is a consequence of the constraints 1 f ( z i )  - wil s 6i, 

f (zo)  is real since zo is real and f ( z )  = f (2) .  Also f E AB*-f€ AB. Hence 
i = l 7  . . , n. - 

SupfeAB f(z0) =SUP/EAB lf(z0))- 
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Through the point (CO( S ) ,  0, . . . , 0) which is on the frontier of the convex set Y 
one can construct a supporting hyperplane whose equation has the form 

j =  1 

Since Y is symmetric with respect to the origin of coordinates 
n 

J =  I 
Yo = c C,(WYJ - CO(6) 

will also be a supporting hyperplane for Y. In fact Y is contained between these two 
hyperplanes. Thus 

or in another form 

The relation ( A l )  implies that for any E > 0 there is a f E  E A such that 

lfe(zo)l> Co(6)-& (A31 

and w1 = . . . = w, = 0. But the set A with the conditions w1 = . . . = w, = 0 coincides 
with the set AB. Thus fe E AB. - f E  will have the same property (A3). 

Now let S be any arbitrary method of approximation of the value f (  zo) ,  f~ A. 
Then for * f E  E AB the approximate value of f(zO) will be equal to 

S(6, W l ,  . . . , w,)  = S ( S ,  0 ,  * . . , O )  =so. 
But the inequaliites 

1 f E  - so/ + /-f€ (‘0) - 1 f€ (‘0) - so+ so- ( - f E  ( z o ) ) l  > 2( CO( - 

imply that for every function *fe the approximate error is greater than CO( 6) - E and 
since E is arbitrary we obtain 

The inequalities (A2) and (A4) show that there is a linear method of extrapolation. 
It is easily seen that 

C, ( 1 =  YO/ ayjl y I  ,.. . .yn =oT j = 1, . . , n. 
Thus we have the following proposition. Let us denote ( P ~ ( E ,  8) = SUPfcA, f(zo) 

w h e r e A J = { f ~ f E B , ~ f ( z i ) - & S i l ) ~ S i , i = 1 , . .  .,n}. If ( ~ ~ ( ~ , S ) i s d i f f e r e n t i a b l e i n ~ = O ,  
C j ( 6 )  =dp j (E ,  S)/dEIE=O. 

Proof of theorem 4. Theorem 3 allows us to find the set F = ( u l r .  . . , U,) c E, i.e. the 
maximal number of data points whose errors are compatible with the boundedness 
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and analyticity properties of the extremals. The point zo to which we extrapolate is 
supposed to be outside the physical region - 1  < u1 < . . . < U, < zo < 1 ,  the other cases 
being treated similarly. F is determined by the condition that all eigenvalues of the 
matrix 

are positive. The notations are those of 9 3.  
The strict positivity of A implies the existence of a continuum of solutions (Krein 

and Nudelman 1973) to the following problem of interpolation: find a bounded analytic 
function f T (  z )  E B such that 

f T ( U k )  = ( - l )m-k&k,  

fT ( U,) = (- 1 )  m-’Ej  + a ; k +  j ;  k =  1 , .  . . , m, 

where la1 is sufficiently small. 
The interpolation problem ( A 6 )  can be solved by applying Schur’s algorithm (1 .6) .  

The order in which the points U; are introduced into the algorithm is arbitrary and we 
have made use of it by permuting the points uj and U, in order to simplify the 
subsequent calculations. 

dfk, ujk and b,k(z) are defined as in theorem 4, the only change being that 

( - l )m-k&k,  k # j , m ,  
d$) = E,, k = j ,  r ( - 1 ) , - ’ E j  + a, k = m. 

Thus q j ( z ,  a )  = pjo(z ,  c ~ ) / q , ~ ( z ,  a )  where pjo and q,o are the solutions of ( 1 . 6 a ) ,  and 
w; are given by ( A 6 ) .  The dependence upon a of q j ( z ,  a )  is contained only in the 
coefficients d l z - l ) .  Thus we obtain 

where 
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